2 min read
Settlement & Allocation
The gat alloc commands analyze OPF results to compute congestion rents, surplus decomposition, and KPI attribution — essential for market settlement and policy analysis.
Overview
| Command | Purpose |
|---|---|
alloc rents | Compute congestion rents from OPF |
alloc kpi | Attribute KPI changes to control actions |
Congestion Rent Analysis
gat alloc rents
Decomposes system surplus into congestion rents, generator revenues, and load payments from OPF results.
Required Arguments:
--opf-results— OPF output (must havebus_id,lmp,injection_mw,flow_mw)--grid-file— Grid topology (Arrow format)--out— Output file
Options:
--tariffs— Optional tariff parameters CSV (resource_id,tariff_rate)--out-partitions— Partition output by columns
Output Columns:
branch_id— Transmission elementcongestion_rent— Revenue from price differences ($/hr)flow_mw— Power flow on branchlmp_from,lmp_to— Nodal prices at endpointsbinding— Whether flow limit is binding
Surplus Decomposition
The total system surplus decomposes as:
Total Surplus = Generator Revenue - Load Payments + Congestion Rents
Where:
- Generator Revenue = Σ (LMP_i × P_gen_i)
- Load Payments = Σ (LMP_i × P_load_i)
- Congestion Rents = Σ (LMP_to - LMP_from) × Flow_ij
Reference: LMP-Based Congestion Analysis
Example: Market Settlement
# Run OPF
# Compute settlement
# Analyze in Python
)
)
)
KPI Attribution
gat alloc kpi
Approximates the contribution of control actions to KPI improvements using gradient-based sensitivity.
Required Arguments:
--kpi-results— KPI values by scenario (scenario_id,kpi_value)--scenario-meta— Scenario metadata (control flags, policy settings)--out— Output contribution table
Output Columns:
control_variable— Name of the control actioncontribution— Estimated contribution to KPI changedirection— Positive/negative effectconfidence— Confidence level of estimate
Example: Policy Impact Analysis
# Run scenarios with different policies
# Extract KPIs
# Attribute contributions
This enables questions like:
- "How much did DER dispatch reduce congestion?"
- "What's the reliability impact of the new line?"
- "Which control action contributed most to loss reduction?"
Reference: SHAP for Model Explanations
Use Cases
Market Operations
- Compute congestion rents for ISO settlement
- Decompose uplift charges by cause
- Analyze FTR (Financial Transmission Rights) values
Regulatory Analysis
- Attribute reliability improvements to investments
- Quantify policy impacts on system costs
- Support rate case analysis
Research
- Validate market clearing algorithms
- Study LMP behavior under scenarios
- Develop attribution methods for grid KPIs
Related Commands
- OPF — Optimal power flow analysis
- Batch Analysis — Multi-scenario analysis
- Reliability — Reliability metrics